Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources and Energy Storages

نویسندگان

  • Seppo Kärkkäinen
  • Matthias Stifter
  • Carmen Rodríguez
چکیده

Background Energy policies are promoting distributed energy resources such as energy efficiency, distributed generation (DG), energy storage devices, and renewable energy resources (RES), increasing the number of DG installations and especially variable output (only partly controllable) sources like wind power, solar, small hydro and combined heat and power. Intermittent generation like wind can cause problems in grids, in physical balances and in adequacy of power. Thus, there are two goals for integrating distributed energy resources locally and globally: network management point of view and energy market objectives. Solutions to decrease the problems caused by the variable output of intermittent resources are to add energy storages into the system, create more flexibility on the supply side to mitigate supply intermittency and load variation, and to increase flexibility in electricity consumption. Combining the different characteristics of these resources is essential in increasing the value of distributed energy resources in the bulk power system and in the energy market. IEA has several Implementing Agreements dealing with distributed generation (DG) (such as wind, photovoltaic, CHP), energy storage and demand side management (DSM). However, the question of how to handle the integration of various distributed energy resources is not actually studied. Objectives The main objective of this Task is to study how to achieve a better integration of flexible demand (Demand Response, Demand Side Management) with Distributed Generation, energy storages and Smart Grids. This would lead to an increase of the value of Demand Response, Demand Side Management and Distributed Generation and a decrease of problems caused by intermittent distributed generation (mainly based on renewable energy sources) in the physical electricity systems and at the electricity market. Approach The first step in the Task was to carry out a scope study collecting information from the existing IEA Agreements, participating countries with the help of country experts and from organized workshops and other sources (research programs, field experience etc), analyzing the information on the basis of the above mentioned objectives and synthesizing the information to define the more detailed needs for the further work. The main output of the first step is this state-of-the art report and the proposal for the future work to be carried out as a second step of the Task. Results Overview of the situation: The main topics discussed are DER and electricity supply, flexibility in electricity demand, communications and IT, integration analytics, regulation, policy and business opportunities as well as market …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi Objective Scheduling of Utility-scale Energy Storages and Demand Response Programs Portfolio for Grid Integration of Wind Power

Increasing the penetration of variable wind generation in power systems has created some new challenges in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy storages (ESs) are known as two powerful flexible tools that ca...

متن کامل

Energy Management in Microgrids Containing Electric Vehicles and Renewable ‎Energy Sources Considering Demand Response

Microgrid and smart electrical grids are among the new concepts in power systems that support new technologies within themselves. Electric cars are some advanced technologies that their optimized use can increase grid efficiency. The modern electric cars sometimes, through the necessary infrastructure and proper management, can serve as an energy source to supply grid loads. This study was cond...

متن کامل

Massive Energy Production from Renewable Sources

Renewable and non-conventional distributed energy resources (DERs), such as, wind, solar PV, micro-turbines, fuel cells, diesel generators etc. are gradually becoming more popular as energy efficient and low-emission energy sources. Demand-side management, along with the integration of distributed energy generation and storage, are considered increasingly essential elements for implementing the...

متن کامل

Coordinated resource scheduling in a large scale virtual power plant considering demand response and energy storages

Virtual power plant (VPP) is an effective approach to aggregate distributed generation resources under a central control. This paper introduces a mixed-integer linear programming model for optimal scheduling of the internal resources of a large scale VPP in order to maximize its profit. The proposed model studies the effect of a demand response (DR) program on the scheduling of the VPP. The pro...

متن کامل

Fuel Consumption Reduction and Energy Management in Stand-Alone Hybrid Microgrid under Load Uncertainty and Demand Response by Linear Programming

A stand-alone microgrid usually contains a set of distributed generation resources, energy storage system and loads that can be used to supply electricity of remote areas. These areas are small in terms of population and industry. Connection of these areas to the national distribution network due to the high costs of constructing transmission lines is not economical. Optimal utilization and eco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008